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A finite element discretization for two-dimensional MHD is described. The ele-
ments are triangles with piecewise linear basis functions. The main computational
difficulty is the accurate calculation of the current. The most effective solution is to
employ a current—vorticity advection formulation of the equations. Acceptable results
can also be obtained with a two-step calculation of the current from the vector poten-
tial. Mesh operations are described to reconnect and refine the mesh adaptively in the
vicinity of nearly singular currents to improve magnetic flux conservation. Example
computations of the coalescence instability, tilt mode, and divertor tokamak equilib-
rium, validating and illustrating the method, are presented. The simulations show the
formation of current sheets, with the current density increasing exponentially in time.
During this increase, the grid of initiallx10* points adapts to provide resolution
comparable to a uniform grid of up toflx 10 grid points. @ 1998 Academic Press

1. INTRODUCTION

Finite element, unstructured mesh methods are now just beginning to be used in mag
hydrodynamics (MHD) computations. Unstructured mesh methods have become a lec
approach in computational fluid dynamics for two main reasons.

First, they allow adaptive local mesh refinement. MHD motion tends to develop sh
structures: nearly discontinuous magnetic field and sharply localized, intense current st
We present simulations showing the formation of current sheets, with the current del
increasing exponentially in time. If the resolution is inadequate, truncation error can ce
artificial numerical dissipation and magnetic reconnection. Thereforeitisimportanttore
the grid as much as possible where current sheets form. This should be done adapt
because the location of the sheets can change, as in the case of the tilt mode.

A second feature of unstructured mesh methods is their ability to fit irregular bounda
Applications to modelling laboratory plasmas may require the use of irregularly sha
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boundaries. Although this is an important feature, in this paper we emphasize ada
mesh refinement to resolve current sheets.

In the following, we first list the incompressible, two-dimensional MHD equations. V
then give the standard stream function—vorticity advection form of the equations, as we
the symmetrized current—vorticity advection formulation. The equations can be discret
using piecewise linear, triangular finite elements. Three sparse matrices, the mass rr
stiffness matrix, and bracket tensor, arise in the discretization. Their construction anc
sembly is discussed. The stiffness matrix can cause a convergence problem in comg
the current for which we give two possible cures.

The most effective cure is to use symmetrized MHD equations, in which vorticity &
current are time-advanced, and the potentials are found by solving Poisson equations
other approach is to use a modified stiffness matrix with a wider stencil, having accept
convergence properties.

Adaptive gridding is done with two mesh operations: splitting pairs of triangles into fc
triangles; and the inverse operation of combining four triangles into two.

After describing a new finite element code, FEMHD, based on these algorithms, we |
examples of its use. We verify that the code reproduces previously known solutions
the coalescence and tilt instability. We carry out simulations of current sheet forma
caused by these instabilities. We note that similar results on current sheet formation
recently been obtained using adaptive structured mesh methods. This approach alsc
symmetrized MHD equations in the BisSer form, to be given below.

2. MHD

Magnetohydrodynamics (MHD) is the fluid dynamics of conducting fluid or plasma, c«
pled with Maxwell’s equations. The fluid motion induces currents, which produce Lore
body forces on the fluid. Ampere’s law relates the currents to the magnetic field. The M
approximationis that the electric field vanishes in the moving fluid frame, except for poss
resistive effects.

MHD is described by a higher order system of partial differential equations than fl
dynamics. It admits additional waves, the Adfvivaves, and their instabilities. A typical
feature of MHD is the tendency to form a singular current density. Current sheets
the presence of resistive dissipation, are associated with the breaking and reconnect
magnetic field lines [1, 2].

Various approaches have been used in computational MHD to reduce numerical
netic dissipation. Lagrangian and partially Lagrangian methods [3] are less diffusive t
Eulerian methods, but require substantial rezoning for sheared or straining flow. Mixed f
difference and spectral discretizations have been very effective in dealing with reconne:
in periodic geometry [4]. Finite difference codes with nonuniform, Cartesian product gt
have also been successful in reconnection simulations in which intense current shee
aligned with the grid [1]. These approaches, while effective in specialized geometric cor
urations, are not able to adaptively add grid refinement when current sheets form at arbi
locations on the mesh. Recently, adaptive structured mesh methods have been succe
applied to these problems [5]. However, these methods are not particularly effective
arbitrarily shaped boundaries. For these reasons we are led to try adaptive unstruc
mesh methods. Unstructured meshes have also been used in other computational
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approaches [6]. We have chosen to apply these methods to two-dimensional, incomg
ible MHD, using a stream function approach to enforce the divergence-free condition:
the magnetic and velocity fields. Our approach differs in the use of a symmetrized forr
the equations to eliminate difficulties with the calculation of the current density.

The incompressible MHD equations are

ad
S B=Vx(xB), (1)
p%V = —pV-VV+ (V x B) x B+ puV?v, 2)
v=0, (3)
V.-B=0, (4)

whereB is the magnetic fieldy is the velocity,p = pg is the density, assumed constant
andu is the viscosity. The equations can be made dimensionless, by normdiizimg
reference magnetic field strend®g, p to po, v to the Alfvén velocityva = Bo/ /0, length

to L, and time to the Alfen time,L/va. To enforce incompressibility, it is common to
introduce stream functions,

v= (5052 ©)
ay  IX
B = <%7 _%) (6)
ay aX
In two dimensions, with incompressible flow, the MHD equations can be written
d
S 2 +[Q ¢l =[C. vl +nvie, @)
a
al/f +[y, ¢] =0, 8)
Vi = Q, 9)
C = V?y, (10)

where the two-dimensional Laplacian is

2_ 0% 0
ax2 = 0y?
and
dadb 9dadb
[a,b] = —— — —— .
ax dy  dy dX

The left-hand side of (7), along with (9), is the familiar vorticity—stream function formulatic
of two-dimensional incompressible hydrodynamics. The right-hand side of (7) comes f
the Lorentz force with current densiB and the viscosity with coefficiept. Equation (8) is
from Ohm’s law and Faraday’s law and represents the conservation of magnetic flive
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z component of the magnetic field does not enter (7)—(10), so its evolution is not follow
A large, nearly constarB, is often invoked to justify the incompressible approximation.

The MHD equations conserve energy and magnetic flux. Since the magnetic flux func
is advected with the flow, any function gf is a constant of the motion. The energy,
can be shown to be conserved by premultiplyingshevolution equation by, and they
evolution equation by, and integrating by parts, or working directly from the primitive
form of the equations. One obtains

a 2 2
e _
P £ I / d°x Q°,
where
£ = —; / d?x(v2 4+ B?), (12)

assuming either Dirichlet boundary conditions, with constant on the boundary,
Neumann conditions with the normal derivativegof) equal to zero, or periodic boundary
conditions.

3. SYMMETRIZATION OF EQUATIONS

The evolution of the magnetic and velocity fields are treated in a nonsymmetric wa
the standard formulation above. The velocity is advanced through the vorticity, while
magnetic field is advanced via the magnetic potential. This can cause numerical prob
when the equations are solved on an irregular mesh, such as the unstructured, adaptive
we will use later. It is desirable to formulate the equations in a more symmetrical man
in which the current and vorticity are time advanced.

Instead of solving Egs. (8) and (10), we take the Laplacian of (8) and use (9), (5),
(6). This yields an equation for the current, analogous to (7) for the vorticity,

o IV i) aw]

Deo.Cltie, ¢]+2[ ]+ [8y 5y

" OX (12)

V24 =C. (13)
Equations (12), (13) are solved along with Egs. (7) and (9). The equations are now sym
rical, in the sense that the source functiéhandC are time advanced, and the potentials
andy are obtained at each time step by solving Poisson equations (9) and (13). Diric
Neumann, or periodic boundary equations are applied to the potentials.

The equations can be given an even more symmetric form using thesgélsvariables
v + B for which

P =9 Ly
Qf=Q+C.
Combining the evolution equations ferandC gives (dropping the viscous term)

a7 9™, [907 39*
v =y )

=l { dy = dy
V2ot = QF. (15)

BQi (14)

)
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4. FINITE ELEMENT METHOD

The mesh points of the grid are the vertices of triangles, located at ppindée use a
finite element discretization, introducing basis functiang) which in the present work are
piecewise linear over each triangle and satisfiy ;) = 6;;. The basis function, is equal
to unity on vertex and equal to zero on all other vertices.

The variables in the MHD equations are represented as a sum over basis function:
first consider discretization of Egs. (7)—(10), in which the variables to be expanded in b
functions are the velocity stream functign the magnetic fluxy, vorticity 2, and the
currentC. The variables in the MHD equations, suchygsare represented as

Y =D i Or). (16)

We use a zero residual Galerkin approach in which the equations are multiplied by a t
function; and integrated over the domain. This gives the set of sparse matrix equatic

M~%Q+P:<I>Q=P:\IIC+/LS-Q, 17)
3
M. ¥ +P: oW =0, (18)
S ®=M-Q, (29)
M.C=S-¥, (20)
where
(M- C)i = > M;Cj, (21)
i
(P: W) = > Rijkd; V. (22)

jk

The matrices appearing in these equations are the mass mgtthe stiffness matrixs,
and the Poisson bracket tengydefined by

Mij = /)\ikj d?x (23)
S| = —/Wi - Vijd?x (24)
P = [ by i o (25)

Both the stiffness and mass matrices are symmetric. The Poisson bracketis anti-symr
under the exchange of any two indices. This assures that some of the most impo
integral relations satisfied by the differential equations are preserved by the finite eler
discretization. This includes conservation of energy and magnetic flux in the absenc
dissipation. The matrices are sparse, having nonzero elements only between those ve
connected by the side of a triangle.



ADAPTIVE METHOD FOR MAGNETOHYDRODYNAMICS 323

The discretization of the current—vorticity forms of the MHD equations is similar a
involves the same matrices, as well as the gradient matrix, which can readily be constrt
from the Poisson bracket matrix, using the spatial coordingtgss one of the arguments:

Dij = /)»i V0% = Rijk(h& = XI). (26)
K

The gradient matrix is used to discretize the partial derivativeg ahd¢ in the Poisson
brackets on the right side of (12). Itis also used to develop a more accurate stiffness m
derived below in (36).

5. TRIANGLE BASED MATRICES

The matrices appearing in (23), (24), and (25) can be calculated analytically in €
triangle and accumulated on the triangle vertices. The matrices have a simple form lo
in each triangle. In each triangle, introduce a local numbering of the vertices=1, 2, 3,
labeled in a counterclockwise order. The side segmentsare labeled by their opposite
vertex,

dri=rs—rs,

and so on in cyclic order, or
1
dry =3 > apy (rp 1), (27)
By

where the permutation symbalg, =1 if the values of the indices are in ascending orde
or a cyclic permutation;-1, if the indices are in descending order or a cyclic permutatio
or 0, if any two indices have the same value.

The triangle area is given by

1 . 1 X
A:Edrlxdr2-2=ZZeo¢;ydrﬂxdry-z (28)
By
The basis functions can be expressed as
Ao (1) = 12:(r rg) x dry - 2 (29)
Y VN P o

B

To calculate the matrices, we need integrals of basis functions over the triangle, whict

£imin!

AATAD 2 = 2A T
/A e (C+m+n+2)!

The contribution to the mass matrix from a single trian&leis

) 6, a=p
Nos = AL a=p (30)
AJ12, a +B.
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To calculate the stiffness matrix and Poisson bracket tensor, we need the gradients
basis functions, which are constant in each triangle, and from (29) are given by

Vi _dry x 2
T 2A

(31)

This immediately yields the contribution to the stiffness matrix from a single tria&gle,

dra . drﬂ

Sup = — 32
Sup A (32)
The contribution in a triangle to the Poisson bracket tensor is giveé?) by
= =/,\[x A]d2x=i26 (33)
afy A al?ps My 12 . Byd»

which is independent af. The local matrices are assembled globally by summing tl
contribution of each triangle which shares a given vertex

It is convenient to consider a diagonalized form of the mass matrix, called the lum|
mass matrix, formed by subtracting all off-diagonal matrix elements in each row and ad
them to the diagonal,

mf = Z Mik = %Z Aa, (34)
k

ad)

wherea(i) is the label of a triangle having vertéxlIts value, from (30), is one-third the
area of the triangles surrounding the vertex.

Using the lumped mass, the finite element discretization is equivalent to a finite volt
discretization, where the control volumes are constructed by joining the barycenters o
triangles (average of the vertex positions) to the midpoints of the triangle edges.

6. LAPLACIAN

Finite element representations are accurate and convergent in an integral sense, s
in L, norm. This does not mean, however, that the error at any given point will converg
zero as the mesh is refined. For this reason, the errors in the finite element Laplacial
be a source of noise, unless the mesh is uniform. This is not a problem when one w
to invert the Laplacian, as in Eqg. (19). This is a smoothing operation and the solutior
quite acceptable. On the other handlculatingthe Laplacian, as in Eq. (20) can be quite
inaccurate locally.

Forming the Laplacian by multiplying by the stiffness matrix and the inverse mass mat
M~1.S, yields excellent results on a uniform mesh. The Laplacian of a smooth function
this mesh is also smooth. Unfortunately, when the mesh is adaptively refined, it typic
becomes nonuniform. The mesh shown in Fig. 1a has uniformly spaced mesh points
the triangle vertices have alternately four and eight neighbors. Figure 1b shothe
discretized Laplacian aof; = sinzX; sinzy; on this mesh,

1
Cr) = E oy SjrjAi(r).
ij M
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Refining the mesh is of no help, if it retains the alternating number of neighbors. T
example shows that in some cases, the usual Laplacian is not locally convergent.

A uniform mesh in which all triangle vertices have six neighbors can be obtained fr
this mesh by a simple reconnection operation. One approach is to use vertex reconne
to try to equalize the number of neighbors of each vertex. However, with more comg
meshes, it is virtually impossible to do this.

A way to improve the calculation of the Laplacian is to obtain the discretizati®t ¢f
by applying adiscretized gradient operator twice. First, the componevitg afe calculated
and reexpanded in basis functions. Then, the discretized derivatives of these quantitie
obtained to ge¥V - Vi, which is again expanded in basis functions. The lumped mas:s
used to make the solution for the derivatives trivial. This method improves the accur
because th&y, components are first averaged from triangles to vertices, smoothing
gradient. The divergence calculation performs a similar smoothing. The method w
because taking a single derivative is first-order accurate. Taking a second derivative ir
steps is formally first-order accurate, and the method in practice is found to be conver
unlike the original method. The discretized version of the gradient of a fungtin

(V) = M Djkyhi (X, Y), (35)

i,j.k

whereD is the gradient matrix (26).
Taking the divergence of (35), multiplying by a basis function, and integrating over
domain is equivalent to introducing a new stiffness ma@ixgiven by

S, =>_ My'Di - Dj. (36)
kI

In the above equations (35) and (36), it is sufficient to use the lumped mass matrix (
This stiffness matrix has the same symmetry properties as the standard stiffness m
Figure 1c was obtained using the standard lumped masSand

Although the Laplacian has much better accuracy using this method, there is some
of numerical stability, because the effective stencil of the Laplacian is now larger.

For adaptive problems, the best method appears to be the use of the current—vor
formulation. In this approach, the Laplacian does not appear at all on the right-hand sic
the equations, only on the left-hand sides of the two Poisson equations for the poten
There appearsto be no problem with smoothness of the potentials, using the original stif
matrix, even on an irregular mesh. This is because, as remarked above, the inversion
Poisson equation is a smoothing operation. Both the currents and potentials have suff
smoothness to obtain acceptable solutions.

7. ALGORITHM

We have written a two-dimensional, adaptive, finite element MHD code, called FEMF
The code solves Egs. (7), (9) and (8), (10), or (12), (13). The code is written in modi
form. One module generates the mesh and various arrays which specify its connect
The fundamental mesh arrays are the listBloferticesr; and an array which lists the three
vertex indices of each of the triangles.
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From these arrays, useful secondary arrays are constructed. These arrays list the |
boring vertices of each vertex, which are connected by a triangle side. Also listed are
number of neighbors, as well as the triangle numbers of the triangles sharing a partit
vertex.

Another module contains routines for constructing and assembling the mass and stif
matrices, the Poisson bracket tensor, and for inverting sparse symmetric matrices. We
the stiffness and mass matrices using a sparse matrix conjugate gradient algorithm w
incomplete Cholesky preconditioner.

The discretized equations are solved in a separate module. The time derivative
represented by second-order finite differences. The equations are advanced explicitly,
a leapfrog time differencing, but with the dissipative terms in Egs. (7), (8) solved implici
by combining them with the mass matrix.

8. ADAPTIVE REFINEMENT

Mesh refinement is especially important, being one of the major reasons for usin
unstructured mesh. Adaptive methods are particularly useful when there are isolated ct
sheets, as in the following, although less useful for fully developed turbulence.

The mesh refinement method works especially well for right triangles. The splitt
operation is reversible and involves pairs of triangles. To be eligible for splitting, a
must have their common side opposite their largest interior angles. This ensures, in the
of splitting, that the new triangles will not have excessively acute interior angles.

The mesh s refined by splitting pairs of triangles into four triangles. A new vertex is ad
at the midpoint of the common side. If the triangles are right triangles, only pairs witl
common hypotenuse can be split. Isoceles right triangles will be divided into isoceles r
triangles. They can be subdivided arbitrarily many times by this method. Nonisoceles |
triangles will generate geometrically similar descendants after two splittings and can als
subdivided indefinitely. When a vertex is added, all MHD variables are linearly interpola
onto the new vertex, consistent with the piecewise linear representation.

The mesh is unrefined by reversing the division process. Four triangles with a com
vertex can be unsplit into two triangles by removing the vertex. A diagonal is drawn aci
the four remaining vertices.

We have an adaptive algorithm to refine the mesh as the computation proceeds. Be
we want to resolve current sheets, we monitor the current. If the product of current det
times triangle ared&; A, exceeds a threshold, we split the triangle in two. The local curre
density in a current sheet typically rises exponentially in time, so the refinement proces:
this same behavior. We have to stop the refinement at some preset triangle size and ni
of mesh points. Similarly, if the current is too low, the triangles at that vertex are unrefir
There are of course other possible refinement criteria [5, 6].

The justification for using the product of current density and triangle area as a refiner
criterion is thatC A is comparable to the discretization error in the magnetic fiuxt is
very important to conserve magnetic flux in the neighborhood of a current sheet, in o
to prevent numerical reconnection, as will be shown in the next section.

Itis desirable to mak€ A as small as possible near a current sheet. Elsew@ié&rean be
larger to avoid unnecessary mesh refinement. A way to do this is to weight the refiner
criterion. One possible weighting, which was used in the following, takes advantag
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the fact that current sheets form on the magnetic separatrix. The separatrix is the loc
points having a particulag value,ys, which divides different flux regions. The refinemen

criterion was
v — s
1 , 37
+< 50 )] 7

wherecy, § are constants angty, Cp, and Aq are reference maximum values of those
respective quatities. The criterion is calculated using the aver&yarmdy, on each triangle.
For the maximum localization, the constdmian be set as small as possible, but not so sm:
that the bracketed term on the right side of (37) is large on mesh points of triangles wi
cross the separatrix, on the unrefined mesh. This has an effect similar to incrgasing

CA > CoC()AO

9. COMPUTATIONAL RESULTS: COALESCENCE INSTABILITY

As an example and test of the method, we first consider the periodic coalescence insta
[1, 2].

The initial equilibrium for the periodic coalescence instability consists of an array
cells with

¥ = Alcos(4rnx/¢) — cod4nry/L)], (38)

C=—(4n /)%y, andg = Q =0. We choose the constars= 1, ¢ = 1. The initial equi-
librium flux function is shown in Fig. 3a.

We solve the time-dependent equations in the domaix@: ¢, 0 < y < ¢, with periodic
boundary conditions. Periodicity is built into the mesh by the connectivity of the me
triangles. With periodic boundary conditions, coordinate differences are calculated mo
£ to obtain the mesh-dependent mass and stiffness matrices.

The initial equilibrium is unstable to small perturbations. Simulations were initializ
with arbitrary velocity perturbations, from which the unstable mode grows agexphe
growth rate was extracted by monitoring the kinetic energy as a function of time. R
were made advancing both the potential and current advection forms of the equation
several initial mesh sizes. No adaptation was done for these linear computations. Fig
shows the growth ratg as a function of number of mesh poirits The two upper curves
showy (N) for zero viscosity, using the two forms of the equations. The curve made w
the current form is marked witk's, while the curve made with the potential advance usin
the modified Laplacian is marked withs. There is little difference in the results, which
appear to asymptote to the same linear growth rate. Also shown is a dashed line, which
growth rate with a viscous term, witlh= 0.025, corresponding to the value gfin finite
difference viscous simulations [2]. The linear growth rate is in excellent agreement v
the viscous finite difference simulations. For a mesh of sizex1000, the finite difference
growth ratey =42. Here, the growth rate fo¥ = 10,000 is (by interpolationy =41.

We now consider an adaptive computation of the coalescence instability. A small viscc
of u=0.005 is used. We use the current—vorticity advection formulation of the MH
equations. Starting with an initial grid ™ = 2500 points, the code evolves the equation
and refines the mesh. The flux functigrat timet = 0.23 is shown in Fig. 3b. The contours
of ¢ have the form of cells divided by a nearly pentagonal separatrix. In [1] it was shown
there is an equilibrium, with pentagonal separatrices, which has a singular current de
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Gamma(N)
60 T T

20F ............................... i

10 _ ............................... -

0 5000 10000 15000
N

FIG. 2. Growth ratey as a function of number of mesh poirits The upper curves were obtained for zero
viscosity, by advancing the magnetic potential or the current. The current advancement method gives som
largery for low N, but the two methods agree closely for larf\erThe lower curve was obtained with viscosity
u=0.025, which agrees with a previously reported, finite difference calculation.

a max 0.20E+01 min -0.20E+01 t= 0.00 a max 0.20E+01 min —0.20E+01 t= 0.23
T

FIG. 3. (a) A calculation of the coalescence instability. Contours of magneticifluat timet=0. The
flux forms a checkerboard diamond shaped pattern. The contours are equally spaced in the2range: 2.
(b) Contours of magnetic flu¥ at timet = 0.23. The diamonds have distorted to form pentagons. Current she
have formed along the short sides of the pentagons.
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c max 0.24E+05 min —0.23E+05 t= 0.23 e x= 0.500 0.500 y= 0.480 0.5
T T T T T T T T T T T 22000

508 | q 20000 |-
18000 |-
16000 |
14000 [-

[ 1 12000 |
498 | ] 8000 |
s | 6000 -
4000

494 -
2000

492 0

4

90 ) L L L L L L L L L L —2000 L L . L ' L L L L
38 40 42 44 46 48 50 52 .54 .56 .58 .60 .62 490 492 494 496 498 500 .502 .504 506 .508 .510
X

(a) x (b)
FIG. 4. (a) A blowup view of contours of currei@ at timet =0.23. The view is centered on the separatrix,
on the short side of a flux pentagon. The horizontal scale is ahdubflthe scalé of the previous figure, while

the vertical scale is about@ . The current sheet has unremarkable structure. (b) A line plot of the current den:
in a vertical slice through the middle of the current sheet.

along the shortest side of each pentagon. This equilibrium has lower energy, and cons
magnetic flux, relative to the initial state. The singular equilibrium might be expected
the final state of the time-dependent evolution.

As the simulation evolves, the current density becomes concentrated into thin st
located at the short side of the pentagonal separatrix. A blowup of the plot of the cur
density at time =0.23 is shown in Fig. 4a. A cross sectional plot of the current densi
is shown in Fig. 4b. The current is well resolved and unremarkable in structure. A sim
blowup of the mesh on which the current is calculated is shown in Fig. 5. The minim
length scale of the mesh idD388 the length of the original mesh cells, which is equivalel
to a mesh of 166,334,000 mesh points. In fact the mesh has 87,770 mesh points.

The peak value of the current density grows exponentially in time, with a large gro
rate more than 10 times the linear mode growth rate. The logarithm of the peak cur
density grows approximately linearly. Exponential growth is predicted theoretically [7].
the current density increases, so does the nurhbef mesh points. The growth of the
current density is insensitive to the refinement criterion for early times, but progressi
more refinement is needed to continue the computation in time. A comparison of the |
current density as a function of time, with different refinement criteria (37), is shown
Fig. 6a. The runs were done with= 0.005, 0.045, and with no refinement. Both adaptive
runs hads = 0.02, approximately the minimum value. The upper curve, witk- 0.005,
corresponds to the run shown in the previous figure. The middle curve cywttD.045,
at first is the same as the upper curve, but then rises more slowly. The lowest curve,
no refinement, has the same growth at first, but does not reach the peak values of the
curves. As the current density increases, so does the number of mesh points, as shc
Fig. 6b. The high resolution run has more than an order of magnitude more mesh pt
than the medium resolution run, which has 7952 mesh points.

In all three cases, the total kinetic and magnetic energy is conserved within 0.2%.
most important difference between the runs is the conservation of magnetic flux at
current sheet, and the amount of numerical reconnectionyTbentours at =0.23, for
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Mesh Ix 1.000 ly 1.000
A ]

.530

525

-
"

520
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T T T T[T T T]T
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480
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I
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|
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T 11 T e

480

475

470

40 42 44 46 4B 50 .62 .54 .56 .58 .60
X

g.e|‘,.,.(

FIG. 5. A blowup view of the mesh supporting the previous figure. The mesh is highly refined along
current sheet, which is well resolved. The minimum scale length of the mesh is 0.00388 the size of the initial
separations.

s jpeak(t} N(t)
10 ———— T T T 10° T T L e
104 L J
-5' 4
i = 104 L 4
10° | J
go2le ¢ oo e e e 10° I T T T S S S TP S S N
0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24 0 .02 .04 06 .08 .10 .12 .14 .16 .18 .20 .22 .24
time (a) time (b)

FIG. 6. (a) Time history of the log of the peak current density. In the latter part of the run, the curri
density grows exponentially. The upper curve has the most mesh refinement, the middle curve has moderat
refinement, and the lower curve has no mesh refinement. (b) Time history of the number of mesN plvirtite
latter part of the run, the number of mesh points grows exponentially, keeping pace with the peak current de
Again, the upper curve has the most mesh refinement, the middle curve has moderate mesh refinement,
lower curve has no mesh refinement.
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a max 0.20E+01 min —-0.20E+01 t= . flux(t)
( T T y Tt 1 1 17 T T

|||||

time (b)

FIG. 7. (a) Contours of magnetic flu at timet =0.23 with no mesh refinement. Because of numerica
dissipation, the flux regions merge. Reconnection is not allowed in ideal MHD. (b) Time history of the f
reconnection parametdr. The upper curve, for the high resolution case, shows little reconnection, while t
lower curve, for the unadapted run, shows about 60% of the flux has reconnected.

the unadapted case, are shown in Fig. 7a, which should be compared with Fig. 3b.
originally diamond-shaped flux regions (islands) are merging together, a process not allc
inideal MHD. This can be quantified by considering the magneticfiymeasured between
the merging flux regions in the center of the figure, gdthe maximum value of the flux,
measured in the center of the islands. The flux difference,

1V

Yo

is plotted as a function of time in Fig. 7b. The upper curve is the high resolution case,
the lower curve is the unadapted case. The moderately refined case is similar to the
resolution case, but it has somewhat larger fluctuations. Even for the highest resolu
there is some reconnection, but far less than without mesh refinement.

10. COMPUTATIONAL RESULTS: TILT MODE

We next consider the two-dimensional tilt instability [8]. In this calculation we have us
the lumped mass matrix and the current—vorticity formulation of MHD.
The initial equilibrium state is a bipolar vortex,

_ {[2/kJo(k)]J1(kr)cos¢9, r<1, (39)

(1/r —r)cosh, r>1,
Ji(k) = 0.

When perturbed, an instability occurs, growing exponentially aggxp

We perform a simulation with an initial mesh, with 40 triangles on a side. Starting with 1
equilibrium of Eq. (39), shown in Fig. 8a, a perturbation about*i€maller is inserted. In
the simulation, we take = 0.005, and the simulation box has sides of length 4. Conducti
boundary conditions are applied on the walls, at which 0, andayr/dt =0.
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a max 0.18E+01 min —0.18E+01 t= 0.00 a max 0.18E+0l min —0.18E+01 t= 7.00

wof o T 1 asf ]
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FIG. 8. (a) A calculation of the bipolar vortex tilt instability. Contours of magnetic fluat timet =0. The
flux contours consist of two interior flux systems, centered on o-points, and an exterior flux system whose cor
intersect the boundary. The contours are equally spaced in the +ah8e: v < 1.8. (b) Contours of magnetic
flux ¥ attimet =7. The inner flux blobs have tilted from their initial positions. The separatrix winds around t
edges of the tilted flux blobs.

The previous simulations [8] were compressible, and growth rates were reported ir
range 13 < y < 1.4, depending on the pressure. None of these cases are exactly equiv
to our strictly incompressible model. We obtain the linear growth yatel.2.

Adaptive simulations were done with the current advection scheme. In the simulat
the motion is highly nonlinear by timte= 7. The initialy is shown in Fig. 8a, ang¢t attime
t =7, in the nonlinear stage, is shown in Fig. 8b. At this stage, the vortex has tipped c
The separatrix wraps around the two flux vortices. Current sheets are formed at the le:
edges of the central vortices, which can be seen in a blowup view in Fig. 9a. The n
supporting the contours is shown in the same blowup view Fig. 9b. The mesh resolutior
adaptively followed the formation of the moving, curved current sheet. The peak valu

c max 0.26E+03 min -0.26E+03 t= T.00
T L e e e e

—— T 20 1T

a 2 4 & 810 12 14 16 18 20 22 24, { 2 A f 1 # 20 22 g4, |
x (a) x (b)

FIG.9. (a)Ablowup view of contours of curref at timet = 7. The current is localized along the separatrix.
(b) A blowup view of the mesh, corresponding to the contours in (a). The refinement is able to resolve the mo
curved current sheet.
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FIG. 10. (a) Time history of the log of the peak current density for two values of the refinement threshhe
The upper curve has the lower threshhold. In the latter part of the run, the current density grows exponen
as indicated by the approximately linear growth of the log of the peak current. (b) Time history of the numbe
mesh pointdN. The upper curve has the lower threshhold. In the latter part of the run, the number of mesh p«
grows exponentially, keeping pace with the peak current density.

the current density grows exponentially in time, with a large growth rate about three tir
the linear mode growth rate. This can be seen in Fig. 10a, which shows the logarithm o
peak current density as a function of time. The logarithm of the peak current density gr
approximately linearly. The two curves are from runs with different refinement parame
(37). The upper curve, as well as the plots of Figs. 8 and 9, were done with a thresh
co=0.05, and the lower curve withy = 0.15. There was relatively little difference in the
results. In both cases=0.15, which gave relatively less localization of the refinemer
about the separatrix than in the coalescence simulations. As the current density incre
so does the numbey of mesh points, shown in Fig. 10b. Again, the upper curve had t
lower refinement threshhold, which caused more refinement both in the initial and |
stages of the simulation. The runs ended with 73,700 and 23,670 mesh points, respec

11. OTHER APPLICATIONS

The unstructured mesh methods described above have been also applied in problem
a complicated boundary shape.

In [9] the equations were supplemented by additional equations for variptdes v;
this system is known as compressional reduced MHD [9, 10]. The equations were sc
on the computational mesh, shown at a low resolution of 800 mesh points for clarity
Fig. 11a. The contours of the equilibrium magnetic fikpare shown in Fig. 11b.

In [10] the equations were solved in three dimensions, in the CRMHD approximati
where the third dimension was discretized by finite differences. The grid ir,th@lane
was independent of the third coordinate. e grid was similar to that of Fig. 11a.

Finally, the finite element discretization described here is combined with an existing
full MHD code to give a highly flexible and powerful method for solving 3D nonlinee
MHD problems in complex geometry [11]. Again tlkey grid is independent of the third
coordinate, which is discretized using Fourier series.



ADAPTIVE METHOD FOR MAGNETOHYDRODYNAMICS 335

mesh a {0.00) max 0.16E400 min -0.00E+00 t=  0.00
5 LR RRARN LRARELARE LR R AR R RRFI RN RRRRRRRARARARE] 5 LR RN RN RN RN RN RS AR AN AR R F AR RN RN R R RN R RN AN
. n 1
3t 3t .
| | - _
l /1 1/! '
A I L
LA I
A \§§§\§§\§\\\\ y A
9L 7 9L
_3: - ..3- -
_4_ 4 _4_ 4
_5: _5_ 4
4 LYY |
1
_B||||I||||I||||I||||I||||I||||I||||I||||I||||I||||I||||I|||w bt e el o b b beo b b
-30 -25 20 -5 <10 -5 0 5 10 15 20 25 30 =30 <25 <20 <15 -10 -5 0 5 10 15 20 25 30
' (a) X (b)

FIG.11. (a)Meshused for magnetic separatrix computation. There are about 800 mesh points. (b) Equilib
magnetic flux functiony calculated with 2D CRMHD, on a mesh like that of (a), but with about four times &
many mesh points.

12. CONCLUSION

MHD motion tends to produce nearly discontinuous magnetic fields and singular
rent density. In general, an adaptive numerical method is needed. We have solved
dimensional, incompressible MHD equations on an unstructured grid of triangles, u:
a piecewise linear finite element discretization. A stream function representation of
magnetic and velocity fields is used to ensure zero divergence of the fields.

A straightforward application of this approach causes problems with the current, du
the local nonconvergence of the finite element Laplacian. An improved Laplacian cal
constructed by successive application of the finite element gradient and divergence
adaptive computations, the best results are obtained by reformulating the MHD equa
so that the vorticity and current are time advanced, with the magnetic and velocity str
functions found by solving Poisson equations.

For adaptive computations, mesh operations are provided to reconnect triangles a
refine (and unrefine) the mesh. The mesh adaptively refines to resolve current sheets,
conserving magnetic flux. Example simulations of the coalescence and tilt instability s|
the formation of current sheets, with the current density increasing exponentially in tin
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in

The unstructured mesh methods described in this paper have also been applied to pro
which the computational boundary has a complicated shape. The methods are |

incorporated in a three-dimensional MHD code, in which the mesh is unstructured in
dimensions, and structured in the third dimension.
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